Книга содержит около 200 рецептов решения практических задач машинного обучения, таких как загрузка и обработка текстовых или числовых данных, отбор модели, уменьшение размерности и многие другие.
Рассмотрена работа с языком Python и его библиотеками, в том числе pandas и scikit-learn.
Решения всех задач сопровождаются подробными объяснениями.
Каждый рецепт содержит работающий программный код, который можно вставлять, объединять и адаптировать, создавая собственное приложение.
Приведены рецепты решений с использованием векторов, матриц и массивов; обработки данных, текста, изображений, дат и времени; уменьшения размерности и методов выделения или отбора признаков; оценивания и отбора моделей; линейной и логистической регрессии, деревьев, лесов и k ближайших соседей; опорно-векторных машин (SVM), наивных байесовых классификаторов, кластеризации и нейронных сетей; сохранения и загрузки натренированных моделей.